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1 Calculation of alignment scores

The main text describes an alignment scoring scheme that incorporates sequence quality data:
here we describe how our software performs these calculations. The input given to the algo-
rithm includes a scoring matrix, and read quality scores in either FASTQ format (one quality
score per base) or PRB format (four quality scores per base).In order to use the scoring scheme
in equation 12 of the main text, we need to pre-calculateT , Rxy, andP (y|d). Given a scoring
matrix, it is possible to calculateT uniquely [5], and we do so using software kindly supplied
by Yu and Altschul. WithT in hand,Rxy is simplyexp(Sxy/T ). We convert quality scoreQy

to P (y|d) as follows:

P (y|d) = 1 − 10−Qy/10 (S1)

or:

P (y|d) = 1/(1 + 10−Qy/10) , (S2)

depending on the type of quality score provided. For FASTQ data, we estimate the probability
of the most probable basem as above and the probabilities for the other three bases as:

P (z|d)z 6=m = (1 − P (m|d)) /3 . (S3)

To gain speed, we pre-calculate lookup tables, so that everypossible quality score can be
immediately translated toP (y|d) andP (z|d). This is feasible because quality scores are always
small integers.

Calculation of the position-specific-scoring-matrix using:

S ′
xd = T × ln

∑

y

( RxyP (y|d) ) (S4)

is still a little slow. For simple scoring matrices in which all matches have the same score
Smatch = T × ln Rmatch, and all mismatches have the same scoreSmismatch= T × ln Rmismatch, we
use a faster method. In this case, noting that:
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∑

y 6=x

P (y|d) = 1 − P (x|d) (S5)

we observe that the following is equivalent to equation S4:

S ′
xd = T × ln [ P (x|d) × Rmatch + ( 1 − P (x|d) ) × Rmismatch] . (S6)

Since this computation depends only onP (x|d), which is stipulated byQx, we can pre-
compute lookup tables for translating quality scores directly to S ′

xd. (For PRB data, this formula
may give numerically different results than equation S4. This is because the quality scores
in the PRB file have each been rounded to the nearest integer, and after rounding errors the
probabilities generally do not sum to exactly 1.)

In our software, the valuesS ′
xd in the position-specific-scoring-matrix are rounded to the

nearest integer.

2 Mapping probabilities for local and semi-global alignment

In our formulation a read mapping is simply an alignment between the read and the genome.
We motivate the probability formula for a mappingµ,

p(µ) = eSµ/T /
∑

α∈mappings

(

eSα/T
)

, (S7)

based on a probabilistic model of alignment. We consider both local and semi-global alignment.
“Local” alignment allows alignment between any part of the read and any part of the genome;
while “semi-global” alignment requires the entire read to align. In either case, the probability
of a mappingµ can be written as the following Bayesian formula:

P (µ|data) =
P (data|µ) × P (µ)

∑

α∈mappings(P (data|α) × P (α))
, (S8)

where the data consists of the genome, the read and its quality scores. The probability of the
observed data (the genome sequence and the sequencer read) given a mappingα is:

P (data|α) =
∏

l∈aligned inα

P (xldl|A) ×
∏

j∈genome unaligned inα

P (xj) ×
∏

k∈read unaligned inα

P (dk) (S9)

Wherexl denotes thelth aligned genome base anddl the sequencer data for the read position
aligned to it,xj denotes thejth unaligned genome base, anddk denotes the sequencer data for
thekth unaligned position of the read.

This formula can be rearranged to obtain:

P (data|α) =
∏

l∈ aligned inα

P (xldl|A) ×
∏

j ∈ genome unaligned inα

P (xj) ×
∏

k ∈ read unaligned inα

P (dk)

= B
∏

l∈ aligned inα

( P (xldl|A)/P (xl)P (dl) )

= B
∏

l∈ aligned inα

R′(xldl) (S10)
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where,

B =
∏

i∈ entire genome

P (xi) ×
∏

j ∈ entire read

P (dj) . (S11)

SinceB does not depend on the alignment, the probability of a mapping given the data (equa-
tion S8) can be rewritten:

P (µ|data) =
P (µ)

∏

l∈ aligned inµ R′(xldl)
∑

α∈mappings

(

P (α)
∏

l∈ aligned inα R′(xldl)
) (S12)

This is equivalent to equation S7.
Semi-global alignment is theoretically more sensitive than local alignment, in cases where

its model is appropriate (i.e. we are certain that the whole read comes from a contiguous region
of the genome). This may not always be true. Moreover, the fact thatBLAST-like alignment
tools such asLAST (andBLAST itself of course) employ heuristics to improve computation
speed and may not always report all high scoring mappings, complicates the issue. Thus it is
not cleara priori that semi-global alignment will outperform local alignment in practice.

2.1 Comparison to previous mapping probability calculations

The calculation described above is similar to ones described previously [1, 3]. The main novel-
ties are that we model real sequence differences, using a scoring matrix and gap costs, and we
allow for local alignment. If these ingredients are removed(e.g. by setting the mismatch and
gap costs to infinity), our calculation becomes equivalent to the previous ones.

Li et al. describe three sources of mapping error [3]:

Type-1 Spuriously mapped reads that do not really come from the reference genome sequence
at all.

Type-2 Erroneously mapped reads, whose true mapping to the reference was missed by the
heuristic alignment algorithm.

Type-3 Erroneously mapped reads, reads whose true mapping was not missed by the algo-
rithm.

Our calculation accounts for type-3 errors only. In the workof Li et al., type-1 errors are “not
counted”, but they do give a formula for type-2 errors. In more recent work by these authors,
however, they “assume the true hit can always be found” [2]. We understand this to mean that
they no longer account for type-2 errors.

3 Justifications for some mapping parameters

In this study, we needed to fix values for various parameters such as the mapping probability
threshold and the spaced seed pattern. Here, we justify someof our choices.
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3.1 Mapping probability threshold

Throughout this study, we used alignments with mapping probability ≥ 0.99. Figure S4 shows
what happens if we instead use 0.9 or 0.999. With a threshold of 0.9, we get significantly
more false mappings. With a threshold of 0.999, we initiallyget fewer false mappings, but the
number of correct mappings ultimately found is slightly lower. The “right” mapping probabil-
ity threshold depends on the balance we wish to achieve between the number of correct and
incorrect mappings, but these findings show that 0.99 appears reasonable.

3.2 Spaced seed pattern

LAST can use “adaptive spaced seeds”, which we explain with an example. Suppose we use
this spaced seed pattern:1111110. Starting from a particular base in a DNA read,LAST
will look for the shortest sequence that occurs no more than (say) ten times in the genome.
However, it will tolerate mismatches at every seventh base (the pattern is cyclically repeated).

We have not rigorously determined which spaced seed patternis optimal. Here, we just
tried three patterns:1 (i.e. ordinary non-spaced seeds),1111110, and11111011000. The
reason we tried the latter two is that these (when cyclicallyrepeated out to a sufficient size) are
optimal for guaranteeing to find alignments with, respectively, one or two mismatches.

For simulated reads, spaced seeds give clearly better mapping accuracy than non-spaced
seeds (Figure S5). This is consistent with previous observations that spaced seeds are superior
[4]. The pattern1111110 seems slightly better than11111011000 for low levels of substi-
tution (0.2% to 1%), but it might become worse for higher levels of substitution. In any case,
we selected1111110 as the default seed for this study.

3.3 Scale for the score parameters

The score parameters shown in Table 1 of the main text involvean arbitrary scale factor,T . We
set the scale by fixing the match score to be exactly 6 in all cases. This is not necessary, but
we did so because it causesT to be approximately10/ ln(10), and thus the resulting alignment
scores are roughly comparable to phred scores.

3.4 Local versus semi-global alignment

We had to choose whether to align reads to the genome using local or semi-global alignment.
For our tests with simulated reads, we might expect semi-global alignment to work better,
because by design the entire read comes from the genome. For real data, this may not be true:
in our experience, reads often have contaminating sequenceat either or both ends.

LAST (like BLAST) is designed to do local alignment, but it can be tricked intodoing semi-
global alignment. The trick is simply to add 100 to each entryin the scoring matrix, so that all
matches and mismatches have positive scores. After alignment, we subtract100×(read length)
from the alignment scores.LAST will refuse to calculateT for such a scoring matrix, but we
can supplyT manually. This trick would need to be modified for alignment with gaps, but we
only used gapless semi-global alignment in this study.

Mapping accuracy for simulated reads with local and semi-global alignment is shown in
Figure S6. Surprisingly, local alignment does rather well;producing fewer false mappings ini-
tially, although it ultimately finds slightly fewer correctmappings than semi-global alignment.
On the other hand, if we do the mapping in two-mismatch-guarantee mode, the advantage of
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local alignment almost vanishes (Figure S7). This can be explained as follows: if a read aligns
to several genome locations, the difference in alignment scores will tend to be lower with local
alignment, because local alignment allows more flexibility. Thus, local alignment will produce
mapping probabilities≥ 0.99 less often than semi-global alignment. This makes it more es-
sential not to miss any high-scoring alignments when doing semi-global alignment. In other
words, local alignment is more robust to heuristic algorithms that miss some alignments.

4 Gap costs for aligningD. melanogaster and D. simulans
DNA

As mentioned in the main text, we obtained suitable gap costsby examining genome alignments
of D. melanogaster versusD. simulans. We first measured the gap frequency (one per 101
aligned bases), and average gap size (6.67). We then calculated the following probabilities:

p(open a gap) = 1/(alignedBasesPerGap+ 1) (S13)

p(extend a gap) = (meanGapSize− 1)/meanGapSize (S14)

p(close a gap) = 1/meanGapSize. (S15)

The gap extension penalty is:

GEP= −T ln[p(extend a gap)] . (S16)

The gap opening penalty is:

GOP= −T ln[p(open a gap) × p(close a gap)/2] − GEP. (S17)

The factor of 2 appears because the gap may occur in either of the two sequences. We
subtract GEP in order to arrange that the gap cost is GOP+ GEP× (gap length), rather than
GOP+ GEP× (gap length− 1).

5 Scalability and memory requirements ofLAST

LAST currently uses 5-6 bytes of memory per base in the genome. It can handle a 3-billion-bp
mammalian genome using about 16 gigabytes of memory. Alternatively, it can handle a mam-
malian genome in 2 gigabytes, by automatically grouping thechromosomes into sufficiently
small groups, and aligning the query sequences to each groupin turn. This grouping approach
is slower, however. So there is a trade-off between speed andmemory usage, which can be
adjusted by the user.

We are investigating other techniques to reduce the memory usage (e.g. compressed suffix
array, FM-index). In our understanding, these techniques have a practical cost in terms of speed.
Our first attempt to use a compressed suffix array proved slower than chromosome-grouping
(Kengo Sato, unpublished results). So the value of these techniques is not yet clear.

6 Supporting Figures
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Figure S1: Estimated error rates for several DNA short-readdatasets, from different submitters.
The datasets and title information were obtained from the NCBI Short Read Archive. Each
black bar shows the median error rate at one position, among 100,000 DNA reads. Each gray
bar shows the mean error rate. These datasets were picked at random, without (e.g.) preferring
datasets with high error rates. These datasets show different error patterns, but the datasets used
in this study (first two columns) do not have particularly unusual error rates. The graphs in the
top row used the first 100,000 reads in each dataset, whereas the graphs in the bottom row used
100,000 randomly chosen reads from each dataset. Although this does affect the distributions,
it does not greatly alter the error rates of the two datasets used in this study.
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Figure S2: Mapping accuracy for 100,000 simulated 36-bp reads. The reads differ from the
genome by a certain rate of “real” substitutions (0.2%, 0.5%, 2%, or 5%), plus sequencer errors.
In each case, 60% of the “real” substitutions are transitions and 40% are transversions. Each
line shows the relationship between the number of correctlyand incorrectly mapped reads as
the alignment score cutoff is varied. Circles indicate a score cutoff of 150. Dashed lines show
the mapping accuracy when we model the sequencer errors but not the substitutions. Solid lines
show the accuracy when we model both. Dotted lines show the accuracy when we model both,
but ignore the difference between transitions and transversions. The solid and dashed lines here
are identical to those in Figure 2 of the main text.
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Figure S3: Estimated mapping accuracy for 100,000 real 36-bp reads fromD. melanogaster,
mapped to theD. simulans genome. Circles indicate a score cutoff of 150. Dotted linesshow
the mapping accuracy when we model the sequencer errors but not the real differences. Solid
lines show the accuracy when we model both. Dashed red lines show the accuracy when we
model both but forbid insertions and deletions. Correctness was estimated by mapping the
reads to theD. melanogaster genome (modeling sequencer errors only), and using the UCSC
D. melanogaster/D. simulans pairwise genome alignment to cross-reference the mappings. (A)
The reads were mapped to both genomes using the default mode of LAST. This panel is iden-
tical to Figure 5 in the main text. (B) The reads were mapped toD. simulans in default mode,
but to D. melanogaster in two-mismatch-guarantee mode. (C) The reads were mapped to D.
simulans in two-mismatch-guarantee mode and toD. melanogaster in default mode. (D) The
reads were mapped to both genomes in two-mismatch-guarantee mode.
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Figure S4: Mapping accuracy for 100,000 simulated 36-bp reads, with different mapping prob-
ability thresholds. Solid lines show the accuracy when we use mappings with probability≥
0.99. Dashed lines show the accuracy for mapping probability ≥ 0.999. Dotted lines show the
accuracy for mapping probability≥ 0.9. In all cases, we modeled both the sequencer errors
and the “real” substitutions. The other figures all use a threshold of 0.99: so the solid lines here
are identical to those in Figures 2, S2, S5, and S6.
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Figure S5: Mapping accuracy for 100,000 simulated 36-bp reads using different spaced seed
patterns. In all cases, we modeled both the sequencer errorsand the “real” substitutions. The
solid lines here are identical to those in Figures 2, S2, S4, and S6.
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Figure S6: Mapping accuracy for 100,000 simulated 36-bp reads, using either local or semi-
global alignment. Here, “semi-global alignment” means that the whole read sequence was
forced to align to the genome; “local alignment” means that alignments involving only part
of the read were allowed. In all cases, we modeled both the sequencer errors and the “real”
substitutions. The other figures all use local alignment: sothe solid lines here are identical to
those in Figures 2, S2, S4, and S5.
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Figure S7: Mapping accuracy for 100,000 simulated 36-bp reads, using either local or semi-
global alignment. This is identical to Figure S6, except that here we used the alternative map-
ping algorithm, which guarantees to find all matches with up to two substitutions. The solid
lines here are identical to those in Figure 4 of the main text.
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7 Supporting Tables

Table S1: Run times for mapping 100,000 reads withLAST on one core of a 1.86 GHz Xeon
E5320 CPU. The execution times exclude the time for indexingthe genome, which are: 309
secs for human chromosome 1 in default mode; 307 secs for human chromosome 1 in two-
mismatch-guarantee mode; 151 secs for theD. simulans genome in default mode; 149 secs for
theD. simulans genome in two-mismatch-guarantee mode.

Default Two-mismatch-
mode guarantee mode

Mapping 36-bp reads1 to human chromosome 1
Model sequencer errors only 22 sec 130 sec
Model substitutions only 21 sec 185 sec
Model both 30 sec 190 sec
Model both, but ignore the difference between transitions and

transversions
23 sec 176 sec

Mapping 51-bp reads1 to human chromosome 1
Model sequencer errors only 30 sec
Model substitutions only 29 sec
Model both 42 sec
Model both, but ignore the difference between transitions and

transversions
32 sec

Mapping 36-bp reads to theD. simulans genome
Model sequencer errors only 17 sec 14 sec
Model sequencer errors and real differences, excluding inser-

tions and deletions
24 sec 23 sec

Model sequencer errors and real differences, including inser-
tions and deletions

29 sec 56 sec

1 Simulated reads with 1% substitutions, plus sequencer errors.
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